Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Braz. j. med. biol. res ; 35(2): 135-144, Feb. 2002. tab
Article in English | LILACS, SES-SP | ID: lil-303555

ABSTRACT

There are few reports concerning the biological role and the mechanisms of interaction between proteinases and carbohydrates other than those involved in clotting. It has been shown that the interplay of enzymes and glycosaminoglycans is able to modulate the activity of different proteases and also to affect their structures. From the large number of proteases belonging to the well-known protease families and also the variety of carbohydrates described as widely distributed, only few events have been analyzed more deeply. The term "family" is used to describe a group of proteases in which every member shows an evolutionary relationship to at least one other protease. This relationship may be evident throughout the entire sequence, or at least in that part of the sequence responsible for catalytic activity. The majority of proteases belong to the serine, cysteine, aspartic or metalloprotease families. By considering the existing limited proteolysis process, in addition to the initial idea that the proteinases participate only in digestive processes, it is possible to conclude that the function of the enzymes is strictly limited to the cleavage of intended substrates since the destruction of functional proteins would result in normal tissue damage. In addition, the location as well as the eventual regulation of protease activity promoted by glycosaminoglycans can play an essential role in the development of several physiopathological conditions


Subject(s)
Humans , Animals , Endopeptidases , Glycosaminoglycans , Cysteine Endopeptidases , Serine Endopeptidases , Heparin , Serine Proteinase Inhibitors , Tissue Inhibitor of Metalloproteinases , Matrix Metalloproteinases , Glycosaminoglycans
2.
Braz. j. med. biol. res ; 34(6): 699-709, Jun. 2001. ilus, tab, graf
Article in English | LILACS | ID: lil-285842

ABSTRACT

The anticlotting and antithrombotic activities of heparin, heparan sulfate, low molecular weight heparins, heparin and heparin-like compounds from various sources used in clinical practice or under development are briefly reviewed. Heparin isolated from shrimp mimics the pharmacological activities of low molecular weight heparins. A heparan sulfate from Artemia franciscana and a dermatan sulfate from tuna fish show a potent heparin cofactor II activity. A heparan sulfate derived from bovine pancreas has a potent antithrombotic activity in an arterial and venous thrombosis model with a negligible activity upon the serine proteases of the coagulation cascade. It is suggested that the antithrombotic activity of heparin and other antithrombotic agents is due at least in part to their action on endothelial cells stimulating the synthesis of an antithrombotic heparan sulfate.


Subject(s)
Humans , Animals , Cattle , Anticoagulants/pharmacology , Endothelium, Vascular/cytology , Fibrinolytic Agents/pharmacology , Heparin/pharmacology , Heparitin Sulfate/pharmacology , Anticoagulants/chemistry , Anticoagulants/metabolism , Crustacea , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/metabolism , Glycosaminoglycans/metabolism , Glycosaminoglycans/pharmacology , Heparin, Low-Molecular-Weight/chemistry , Heparin, Low-Molecular-Weight/metabolism , Heparin, Low-Molecular-Weight/pharmacology , Heparin/metabolism , Heparitin Sulfate/biosynthesis , Tuna
3.
Braz. j. med. biol. res ; 32(5): 529-38, May 1999.
Article in English | LILACS | ID: lil-233471

ABSTRACT

The distribution and structure of heparan sulfate and heparin are briefly reviewed. Heparan sulfate is a ubiquitous compound of animal cells whose structure has been maintained throughout evolution, showing an enormous variability regarding the relative amounts of its disaccharide units. Heparin, on the other hand, is present only in a few tissues and species of the animal kingdom and in the form of granules inside organelles in the cytoplasm of special cells. Thus, the distribution as well as the main structural features of the molecule, including its main disaccharide unit, have been maintained through evolution. These and other studies led to the proposal that heparan sulfate may be involved in the cell-cell recognition phenomena and control of cell growth, whereas heparin may be involved in defense mechanisms against bacteria and other foreign materials. All indications obtained thus far suggest that these molecules perform the same functions in vertebrates and invertebrates


Subject(s)
Animals , Cell Physiological Phenomena , Heparin , Heparitin Sulfate , Glycosaminoglycans , Heparin/physiology , Heparitin Sulfate/biosynthesis , Heparitin Sulfate/physiology , Invertebrates , Mollusca , Vertebrates
4.
Braz. j. med. biol. res ; 30(7): 865-72, July 1997. ilus, tab, graf
Article in English | LILACS | ID: lil-197238

ABSTRACT

The aim of the present study was to evaluate renal and liver distribution of two monoclonal immunoglobulin light chains. The chains were purified individually from the urine of patients with multiple myeloma and characterized as lambda light chains with a molecular mass of 28 kDa. They were named BJg (high amount of galactose residues exposed) and BJs (sialic acid residues exposed) on the basis of carbohydrate content. A scintigraphic study was performed on male Wistar rats weighing 250 g for 60 min after iv administration of 1 mg of each protein (7.4 MBq), as the intact proteins and also after carbohydrate oxidation. Images were obtained with a Siemens gamma camera with a high-resolution collimator and processed with a MicroDelta system. Hepatic and renal distribution were established and are reported as percent of injected dose. Liver uptake of BJg was significantly higher than liver uptake of BJs (94.3 vs 81.4 per cent) P<0.05). This contributed to its greater removal from the intravascular compartment, and consequently lower kidney accumulation of BJg in comparison to BJs (5.7 vs 18.6 per cent) (P<0.05). After carbohydrate oxidation, there was a decrease in hepatic accumulation of both proteins and consequently a higher renal overload. The tissue distribution of periodate-treated BJg was similar to that of native BJs: 82.7 vs 81.4 per cent in the liver and 17.3 vs 18.6 per cent in the kidneys. These observations indicate the important role of sugar residues of Bence Jones proteins for their recognition by specific membrane receptors, which leads to diffedential tissue accumulation and possible toxicity.


Subject(s)
Rats , Animals , Male , Bence Jones Protein/analysis , Glycosylation , Kidney , Kidney/chemistry , Liver , Liver/chemistry , Radionuclide Imaging , Rats, Wistar , Risk Factors
5.
Braz. j. med. biol. res ; 27(9): 2097-102, Sept. 1994. ilus
Article in English | LILACS | ID: lil-144462

ABSTRACT

The sequence of the disacharide units of eight heparan sulfate proteoglycans of different origins is described. All heparan sulfates contain 5 variable regions made of oligosaccharide blocks of disaccharides, namely GlcUA(1-4) GlcNAc, GlcUA(1-4)GlcNS, IdoUA (104)GlcNS) and monosaccharides (GlcNS, and GlcNS,65) at the non-reducing terminal. The N-acetylated region of the heparan sulfates is linked to the serine of the protein core through a trisaccharide of Xyl-Gal-Gal. Heparan sulfates differ from one another in terms of the number of disaccharides that compose each block


Subject(s)
Cattle , Dogs , Rabbits , Animals , Heparitin Sulfate/chemistry , Oligosaccharides/chemistry , Proteoglycans/chemistry , Acetylation , Carbohydrate Sequence , Chemical Fractionation , Disaccharides/chemistry , Molecular Sequence Data , Polysaccharide-Lyases/analysis , Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL